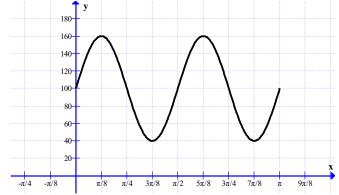
EXERCISES [MAI 3.8]

TRIGONOMETRIC FUNCTIONS

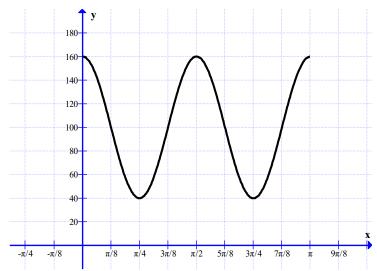
SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

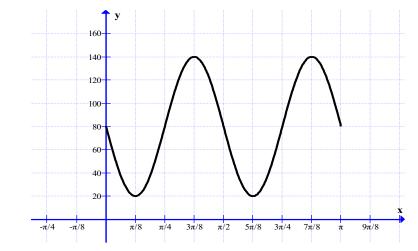

1.

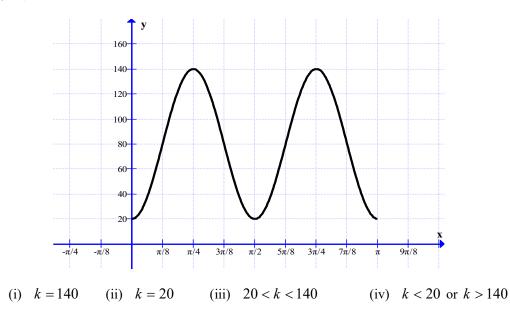
Function	Amplitude	Period	Range
$f(x) = \sin x$	1	2π	$-1 \le y \le 1$
$f(x) = \cos x$	1	2π	$-1 \le y \le 1$
$f(x) = \sin x + 1$	1	2π	$0 \le y \le 2$
$f(x) = \sin x - 1$	1	2π	$-2 \le y \le 0$
$f(x) = 5\sin x$	5	2π	$-5 \le y \le 5$
$f(x) = -7\sin x$	7	2π	$-7 \le y \le 7$
$f(x) = \sin 4x$	1	π / 2	$-1 \le y \le 1$
$f(x) = -\cos 4x$	1	$\pi/2$	$-1 \le y \le 1$
$f(x) = 3\sin 4x$	3	$\pi/2$	$-3 \le y \le 3$
$f(x) = 3\sin 4x + 10$	3	$\pi/2$	$7 \le y \le 13$
$f(x) = 3\sin 4x - 2$	3	$\pi/2$	$-5 \le y \le 1$
$f(x) = -5\sin 3x$	5	$2\pi/3$	$-1 \le y \le 1$
$f(x) = -5\sin x + 10$	5	2π	$5 \le y \le 15$
$f(x) = -5\sin x - 10$	5	2π	$-15 \le y \le -5$
$f(x) = -5\sin x - 10$	5	2π	$-15 \le y \le -5$


2. (a) amplitude = 80, central value = 100, period =
$$\pi/2$$

(b) $f(x) = 80 \sin 4x + 100$, since $B = \frac{2\pi}{Period} = \frac{2\pi}{\pi/2} = 4$

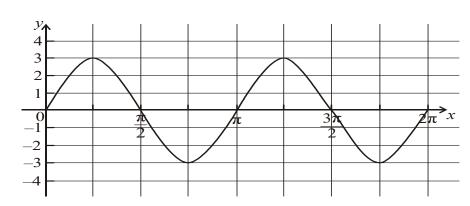
(c) (i) $f(x) = -80 \sin 4(x - \frac{\pi}{4}) + 100$, $(D = \frac{\pi}{4} \text{ is the position of the } 2^{\text{nd}}(\downarrow) \text{ root})$ (ii) $f(x) = 80 \cos 4(x - \frac{\pi}{8}) + 100$, $(D = \frac{\pi}{8} \text{ is the position of the maximum})$ (iii) $f(x) = -80 \cos 4(x - \frac{3\pi}{8}) + 100$, $(D = \frac{3\pi}{8} \text{ is the position of the minimum})$


3.
$$f(x) = 60\sin 4x + 100, \ 0 \le x \le \pi$$


4. $f(x) = 60\cos 4x + 100, \ 0 \le x \le \pi$

5. $f(x) = -60\sin 4x + 80, \ 0 \le x \le \pi$

6.
$$f(x) = -60\cos 4x + 80, \ 0 \le x \le \pi$$

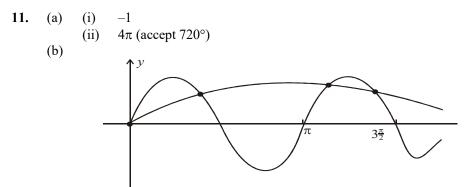


7. From sketch of graph $y = 4\sin\left(3x + \frac{\pi}{2}\right)$ or by observing $|\sin \theta| \le 1$. k > 4, k < -4

8. (a) (i) amplitude
$$= \frac{7+3}{2} = 5 \implies p = -5$$

(ii) period $= 8 \implies q = 0.785 \left(= \frac{2\pi}{8} = \frac{\pi}{4}\right)$
(iii) $r = \frac{7-3}{2} \implies r = 2$
(b) $k = -3$ (accept $y = -3$)

9. (a) period = π



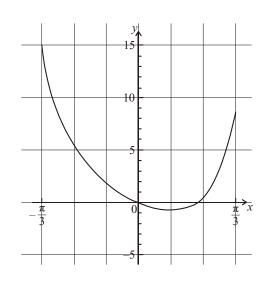
(c) 4 (solutions) (intersection points with line y = 2 on graph)

10. (a) p = 30

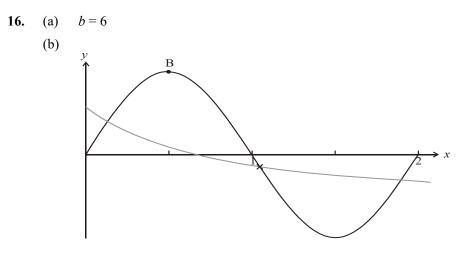
(b) Period =
$$\frac{2\pi}{q} = \frac{\pi}{2} \Rightarrow q = 4$$

number of solutions: 4

- 12. $3 = p + q \cos 0 \implies 3 = p + q$ $-1 = p + q \cos \pi \implies -1 = p - q$
 - (i) p = 1
 - (ii) q = 2


13. METHOD 1

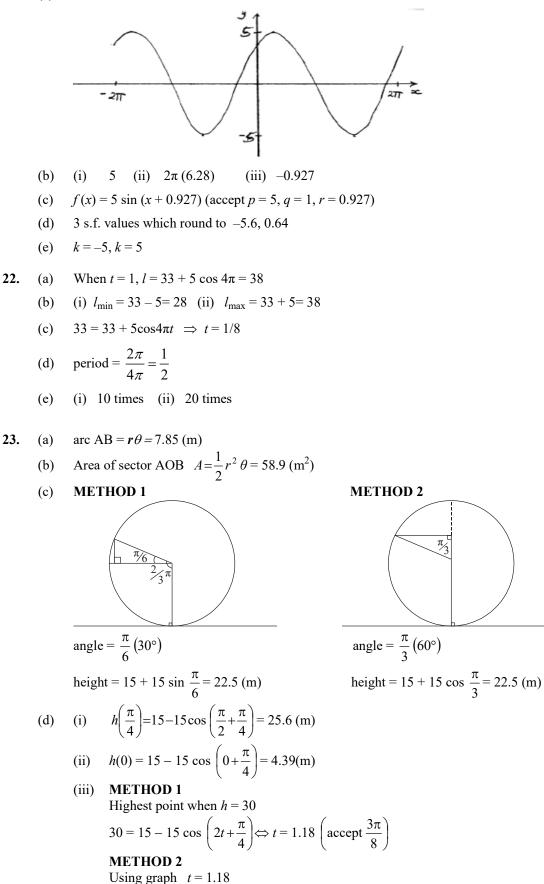
The value of cosine varies between -1 and +1. Therefore: $t = 0 \Rightarrow a + b = 14.3$ $t = 6 \Rightarrow a - b = 10.3$ $\Rightarrow a = 12.3$ b = 2Period = 12 hours $\Rightarrow \frac{2\pi(12)}{k} = 2\pi \Rightarrow k = 12$ **METHOD 2** From graph: Midpoint = a = 12.3Amplitude = b = 2Period = $\frac{2\pi}{2\pi} = 12 \Rightarrow k = 12$

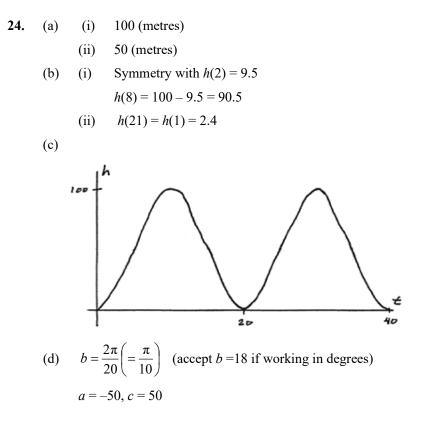

$$\frac{2\pi}{k}$$

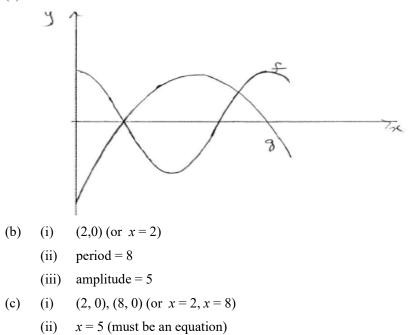
14.
$$a = 4, b = 2, c = \frac{\pi}{2} \left(\text{or} \frac{3\pi}{2} etc \right)$$

15. (a)

passing through (0, 0), range approximately -1 to 15. (b) x = -0.207 x = 0.772


(c) x = 1.05 (accept (1.05, -0.896)) (no additional solutions)


B. Paper 2 questions (LONG)


17.	(a)	(i) $Q = \frac{1}{2}(14.6 - 8.2) = 3.2$
		(ii) $P = \frac{1}{2}(14.6 + 8.2) = 11.4$
	(b)	$10 = 11.4 + 3.2\cos\left(\frac{\pi}{6}t\right)$
		t = 3.8648. t = 3.86(3 s.f.)
	(c)	(i) By symmetry, next time is $12 - 3.86 = 8.135 t = 8.14$ (3 s.f.) (ii) From above, first interval is $3.86 < t < 8.14$ This will happen again, 12 hours later, so $15.9 < t < 20.1$
18.	(a)	(i) 7 (ii) 1 (iii) 10
	(b)	(i) $A = \frac{18-2}{2} = 8$
		(ii) $C = 10^{2}$
		(iii) period = 12 $B = \frac{\pi}{6}$ (accept 0.524 or 30)
	(c)	<i>t</i> = 3.52, <i>t</i> = 10.5, between 03:31 and 10:29 (accept 10:30)
19.	(a) (b)	f(1) = 3 $f(5) = 3EITHER distance between successive maxima = period = 5 - 1 = 4$
	(0)	OR period = $\frac{2\pi}{\frac{\pi}{2}} = 4$
		$\frac{\pi}{2}$
	(c)	$\frac{\pi}{2}$ EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3$ and $A\sin\left(\frac{3\pi}{2}\right) + B = -1$
	(c)	EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3$ and $A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$
	(c)	EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3$ and $A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$ $\Leftrightarrow A = 2, B = 1$
	(c)	EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3$ and $A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$
		EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3$ and $A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$ $\Leftrightarrow A = 2, B = 1$ OR Amplitude $= A = \frac{3 - (-1)}{2} = \frac{4}{2} = 2$ Midpoint value $= B = \frac{3 + (-1)}{2} = \frac{2}{2} = 1$
		EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3$ and $A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$ $\Leftrightarrow A = 2, B = 1$ OR Amplitude $= A = \frac{3 - (-1)}{2} = \frac{4}{2} = 2$
20.	(d)	2 EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3 \text{ and } A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$ $\Leftrightarrow A = 2, B = 1$ OR Amplitude $= A = \frac{3 - (-1)}{2} = \frac{4}{2} = 2$ Midpoint value $= B = \frac{3 + (-1)}{2} = \frac{2}{2} = 1$ $f(x) = 2 \Rightarrow 2\sin\left(\frac{\pi}{2}x\right) + 1 = 2 \Rightarrow x = \frac{1}{3} \text{ or } \frac{5}{3} \text{ or } \frac{13}{3}$ (i) $k = -1$ (ii) $1 \le k < 3$ (iii) $-1 < k < 1$ or $k = 3$ (iv) $k < -1$ or $k > 3$ (i) $10 + 4\sin 1 = 13.4$ (ii) At $2100, t = 21$
20.	(d) (e)	2 EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3 \text{ and } A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$ $\Leftrightarrow A = 2, B = 1$ OR Amplitude $= A = \frac{3 - (-1)}{2} = \frac{4}{2} = 2$ Midpoint value $= B = \frac{3 + (-1)}{2} = \frac{2}{2} = 1$ $f(x) = 2 \Rightarrow 2\sin\left(\frac{\pi}{2}x\right) + 1 = 2 \Rightarrow x = \frac{1}{3} \text{ or } \frac{5}{3} \text{ or } \frac{13}{3}$ (i) $k = -1$ (ii) $1 \le k < 3$ (iii) $-1 < k < 1$ or $k = 3$ (iv) $k < -1$ or $k > 3$ (i) $10 + 4\sin 1 = 13.4$
20.	(d) (e) (a)	2 EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3 \text{ and } A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$ $\Leftrightarrow A = 2, B = 1$ OR Amplitude $= A = \frac{3 - (-1)}{2} = \frac{4}{2} = 2$ Midpoint value $= B = \frac{3 + (-1)}{2} = \frac{2}{2} = 1$ $f(x) = 2 \Rightarrow 2\sin\left(\frac{\pi}{2}x\right) + 1 = 2 \Rightarrow x = \frac{1}{3} \text{ or } \frac{5}{3} \text{ or } \frac{13}{3}$ (i) $k = -1$ (ii) $1 \le k < 3$ (iii) $-1 < k < 1$ or $k = 3$ (iv) $k < -1$ or $k > 3$ (i) $10 + 4\sin 1 = 13.4$ (ii) At $2100, t = 21$ $10 + 4\sin 10.5 = 6.48$ (i) 14 metres
20.	(d) (e) (a)	2 EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3 \text{ and } A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$ $\Leftrightarrow A = 2, B = 1$ OR Amplitude $= A = \frac{3 - (-1)}{2} = \frac{4}{2} = 2$ Midpoint value $= B = \frac{3 + (-1)}{2} = \frac{2}{2} = 1$ $f(x) = 2 \Rightarrow 2\sin\left(\frac{\pi}{2}x\right) + 1 = 2 \Rightarrow x = \frac{1}{3} \text{ or } \frac{5}{3} \text{ or } \frac{13}{3}$ (i) $k = -1$ (ii) $1 \le k < 3$ (iii) $-1 < k < 1$ or $k = 3$ (iv) $k < -1$ or $k > 3$ (i) $10 + 4\sin 1 = 13.4$ (ii) At $2100, t = 21$ $10 + 4\sin 10.5 = 6.48$ (i) 14 metres (ii) $14 = 10 + 4\sin\left(\frac{t}{2}\right) \Rightarrow t = \pi$ (=3.14) (i) 4
20.	(d) (e) (a) (b)	2 EITHER $A\sin\left(\frac{\pi}{2}\right) + B = 3 \text{ and } A\sin\left(\frac{3\pi}{2}\right) + B = -1$ $\Leftrightarrow A + B = 3, -A + B = -1$ $\Leftrightarrow A = 2, B = 1$ OR Amplitude $= A = \frac{3 - (-1)}{2} = \frac{4}{2} = 2$ Midpoint value $= B = \frac{3 + (-1)}{2} = \frac{2}{2} = 1$ $f(x) = 2 \Rightarrow 2\sin\left(\frac{\pi}{2}x\right) + 1 = 2 \Rightarrow x = \frac{1}{3} \text{ or } \frac{5}{3} \text{ or } \frac{13}{3}$ (i) $k = -1$ (ii) $1 \le k < 3$ (iii) $-1 < k < 1$ or $k = 3$ (iv) $k < -1$ or $k > 3$ (i) $10 + 4\sin 1 = 13.4$ (ii) $At 2100, t = 21$ $10 + 4\sin 10.5 = 6.48$ (i) 14 metres (ii) $14 = 10 + 4\sin\left(\frac{t}{2}\right) \Rightarrow t = \pi$ (=3.14)

therefore,
$$total = 6$$
 hours

21. (a)

(d) intersect when x = 2 and x = 6.79